If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+60t+50=0
a = -16; b = 60; c = +50;
Δ = b2-4ac
Δ = 602-4·(-16)·50
Δ = 6800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6800}=\sqrt{400*17}=\sqrt{400}*\sqrt{17}=20\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{17}}{2*-16}=\frac{-60-20\sqrt{17}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{17}}{2*-16}=\frac{-60+20\sqrt{17}}{-32} $
| 25-8x=17+x | | 27000=P(2+0.06x9) | | 7.2(x+3)=9.6+9(0.7x-1)+x | | 8y+2=7y-6 | | x+3(3x-7)-2.9=5.2 | | X=2.6y=-2.9 | | 34=14x+1x | | x8-8x=x | | 3^(4x-9)=(1)/(243) | | 4+1.1(-8x-9.3)+8.6x=-9 | | 4+1.1(-8x-9,3)+8.6x=-9 | | 1/3n+5=4 | | x+6÷x=21÷9 | | 0.06z+0.27=0.69 | | -2(t-4)=10=2t | | 5x=6-2x=-5-x | | -7.8x-10=5.2-2(-4x-8.6)-5x | | -3(4s-1)-3=-3(9s+6)-4 | | 3x+5(x+1)=-7.1x+5.3(3x+2) | | -6=4v-2 | | 6y+3-(-y)=-20+5y-7 | | 4x2+5x=6 | | p/7+8=6.3 | | 0.08x-0.4(80+x)=-0.2(80) | | (X+27)-(x-3)=x+5 | | .0825t^2-0.928t+1.831=0 | | -3(-4x+4)=5x+31.37 | | 6-(x-3)=-4+3(x+5) | | 7=10/7x | | 6(x+1)-(3x+6)=-9 | | 6(3x-1)+6=-54 | | 2/5x-7/2=3/5 |